SAE-AISI 8630 Steel vs. AISI 316L Stainless Steel
Both SAE-AISI 8630 steel and AISI 316L stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI 8630 steel and the bottom bar is AISI 316L stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 160 to 200 | |
170 to 350 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 12 to 24 | |
9.0 to 50 |
Fatigue Strength, MPa | 260 to 350 | |
170 to 450 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 73 | |
78 |
Shear Strength, MPa | 340 to 410 | |
370 to 690 |
Tensile Strength: Ultimate (UTS), MPa | 540 to 680 | |
530 to 1160 |
Tensile Strength: Yield (Proof), MPa | 360 to 560 | |
190 to 870 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
290 |
Maximum Temperature: Mechanical, °C | 410 | |
870 |
Melting Completion (Liquidus), °C | 1460 | |
1400 |
Melting Onset (Solidus), °C | 1420 | |
1380 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 39 | |
15 |
Thermal Expansion, µm/m-K | 11 | |
16 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.3 | |
2.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
2.6 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.6 | |
19 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
3.9 |
Embodied Energy, MJ/kg | 20 | |
53 |
Embodied Water, L/kg | 50 | |
150 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 78 to 110 | |
77 to 230 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 340 to 840 | |
93 to 1880 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 19 to 24 | |
19 to 41 |
Strength to Weight: Bending, points | 19 to 22 | |
18 to 31 |
Thermal Diffusivity, mm2/s | 10 | |
4.1 |
Thermal Shock Resistance, points | 18 to 23 | |
12 to 25 |
Alloy Composition
Carbon (C), % | 0.28 to 0.33 | |
0 to 0.030 |
Chromium (Cr), % | 0.4 to 0.6 | |
16 to 18 |
Iron (Fe), % | 96.8 to 97.9 | |
62 to 72 |
Manganese (Mn), % | 0.7 to 0.9 | |
0 to 2.0 |
Molybdenum (Mo), % | 0.15 to 0.25 | |
2.0 to 3.0 |
Nickel (Ni), % | 0.4 to 0.7 | |
10 to 14 |
Nitrogen (N), % | 0 | |
0 to 0.1 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.045 |
Silicon (Si), % | 0.15 to 0.35 | |
0 to 0.75 |
Sulfur (S), % | 0 to 0.040 | |
0 to 0.030 |