MakeItFrom.com
Menu (ESC)

SAE-AISI 8630 Steel vs. C81500 Copper

SAE-AISI 8630 steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8630 steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 200
110
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 24
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 540 to 680
350
Tensile Strength: Yield (Proof), MPa 360 to 560
280

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 410
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
320
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
82
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
83

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.5
2.6
Embodied Energy, MJ/kg 20
41
Embodied Water, L/kg 50
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78 to 110
56
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 840
330
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19 to 24
11
Strength to Weight: Bending, points 19 to 22
12
Thermal Diffusivity, mm2/s 10
91
Thermal Shock Resistance, points 18 to 23
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.28 to 0.33
0
Chromium (Cr), % 0.4 to 0.6
0.4 to 1.5
Copper (Cu), % 0
97.4 to 99.6
Iron (Fe), % 96.8 to 97.9
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.7 to 0.9
0
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0.4 to 0.7
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0 to 0.15
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5