MakeItFrom.com
Menu (ESC)

SAE-AISI 8640 Steel vs. S32053 Stainless Steel

Both SAE-AISI 8640 steel and S32053 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 47% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8640 steel and the bottom bar is S32053 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
46
Fatigue Strength, MPa 270
310
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
80
Shear Strength, MPa 360
510
Tensile Strength: Ultimate (UTS), MPa 570
730
Tensile Strength: Yield (Proof), MPa 380
330

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
33
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.5
6.1
Embodied Energy, MJ/kg 20
83
Embodied Water, L/kg 50
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
270
Resilience: Unit (Modulus of Resilience), kJ/m3 380
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 10
3.3
Thermal Shock Resistance, points 17
16

Alloy Composition

Carbon (C), % 0.38 to 0.43
0 to 0.030
Chromium (Cr), % 0.4 to 0.6
22 to 24
Iron (Fe), % 96.6 to 97.8
41.7 to 48.8
Manganese (Mn), % 0.75 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.15 to 0.25
5.0 to 6.0
Nickel (Ni), % 0.4 to 0.7
24 to 26
Nitrogen (N), % 0
0.17 to 0.22
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.010