MakeItFrom.com
Menu (ESC)

SAE-AISI 8640 Steel vs. S39277 Stainless Steel

Both SAE-AISI 8640 steel and S39277 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 62% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8640 steel and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
28
Fatigue Strength, MPa 270
480
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Shear Strength, MPa 360
600
Tensile Strength: Ultimate (UTS), MPa 570
930
Tensile Strength: Yield (Proof), MPa 380
660

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
4.2
Embodied Energy, MJ/kg 20
59
Embodied Water, L/kg 50
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
240
Resilience: Unit (Modulus of Resilience), kJ/m3 380
1070
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
33
Strength to Weight: Bending, points 20
27
Thermal Diffusivity, mm2/s 10
4.2
Thermal Shock Resistance, points 17
26

Alloy Composition

Carbon (C), % 0.38 to 0.43
0 to 0.025
Chromium (Cr), % 0.4 to 0.6
24 to 26
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 96.6 to 97.8
56.8 to 64.3
Manganese (Mn), % 0.75 to 1.0
0 to 0.8
Molybdenum (Mo), % 0.15 to 0.25
3.0 to 4.0
Nickel (Ni), % 0.4 to 0.7
6.5 to 8.0
Nitrogen (N), % 0
0.23 to 0.33
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0.15 to 0.35
0 to 0.8
Sulfur (S), % 0 to 0.040
0 to 0.0020
Tungsten (W), % 0
0.8 to 1.2