MakeItFrom.com
Menu (ESC)

SAE-AISI 8642 Steel vs. ASTM A369 Grade FP9

Both SAE-AISI 8642 steel and ASTM A369 grade FP9 are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8642 steel and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
20
Fatigue Strength, MPa 270
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Shear Strength, MPa 370
300
Tensile Strength: Ultimate (UTS), MPa 580
470
Tensile Strength: Yield (Proof), MPa 380
240

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 410
600
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
10

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.0
Embodied Energy, MJ/kg 20
28
Embodied Water, L/kg 50
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
80
Resilience: Unit (Modulus of Resilience), kJ/m3 390
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
17
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 10
6.9
Thermal Shock Resistance, points 17
13

Alloy Composition

Carbon (C), % 0.4 to 0.45
0 to 0.15
Chromium (Cr), % 0.4 to 0.6
8.0 to 10
Iron (Fe), % 96.6 to 97.8
87.1 to 90.3
Manganese (Mn), % 0.75 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0.15 to 0.25
0.9 to 1.1
Nickel (Ni), % 0.4 to 0.7
0
Phosphorus (P), % 0 to 0.035
0 to 0.030
Silicon (Si), % 0.15 to 0.35
0.5 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030