MakeItFrom.com
Menu (ESC)

SAE-AISI 8642 Steel vs. EN 1.7767 Steel

Both SAE-AISI 8642 steel and EN 1.7767 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8642 steel and the bottom bar is EN 1.7767 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
20
Fatigue Strength, MPa 270
320 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Shear Strength, MPa 370
420 to 430
Tensile Strength: Ultimate (UTS), MPa 580
670 to 690
Tensile Strength: Yield (Proof), MPa 380
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
480
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
4.5
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
2.4
Embodied Energy, MJ/kg 20
33
Embodied Water, L/kg 50
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 390
570 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 17
19 to 20

Alloy Composition

Carbon (C), % 0.4 to 0.45
0.1 to 0.15
Chromium (Cr), % 0.4 to 0.6
2.8 to 3.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 96.6 to 97.8
93.8 to 95.8
Manganese (Mn), % 0.75 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0.15 to 0.25
0.9 to 1.1
Nickel (Ni), % 0.4 to 0.7
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.035
0 to 0.015
Silicon (Si), % 0.15 to 0.35
0 to 0.15
Sulfur (S), % 0 to 0.040
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.2 to 0.3