MakeItFrom.com
Menu (ESC)

SAE-AISI 8645 Steel vs. S44537 Stainless Steel

Both SAE-AISI 8645 steel and S44537 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8645 steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 200
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 23
21
Fatigue Strength, MPa 280 to 350
230
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
79
Shear Strength, MPa 380 to 400
320
Tensile Strength: Ultimate (UTS), MPa 600 to 670
510
Tensile Strength: Yield (Proof), MPa 390 to 560
360

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 410
1000
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
21
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
3.4
Embodied Energy, MJ/kg 20
50
Embodied Water, L/kg 50
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 120
95
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 840
320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21 to 24
18
Strength to Weight: Bending, points 20 to 22
18
Thermal Diffusivity, mm2/s 10
5.6
Thermal Shock Resistance, points 18 to 20
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.43 to 0.48
0 to 0.030
Chromium (Cr), % 0.4 to 0.6
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 96.5 to 97.7
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0.75 to 1.0
0 to 0.8
Molybdenum (Mo), % 0.15 to 0.25
0
Nickel (Ni), % 0.4 to 0.7
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0.15 to 0.35
0.1 to 0.6
Sulfur (S), % 0 to 0.040
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0