MakeItFrom.com
Menu (ESC)

SAE-AISI 8720 Steel vs. AISI 420F Stainless Steel

Both SAE-AISI 8720 steel and AISI 420F stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8720 steel and the bottom bar is AISI 420F stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
230
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
18
Fatigue Strength, MPa 240
270
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 320
460
Tensile Strength: Ultimate (UTS), MPa 500
740
Tensile Strength: Yield (Proof), MPa 330
430

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 410
760
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.5
2.0
Embodied Energy, MJ/kg 20
28
Embodied Water, L/kg 50
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 290
480
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
27
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 10
6.8
Thermal Shock Resistance, points 17
27

Alloy Composition

Carbon (C), % 0.18 to 0.23
0.3 to 0.4
Chromium (Cr), % 0.4 to 0.6
12 to 14
Iron (Fe), % 96.8 to 98
82.4 to 87.6
Manganese (Mn), % 0.7 to 0.9
0 to 1.3
Molybdenum (Mo), % 0.2 to 0.3
0 to 0.5
Nickel (Ni), % 0.4 to 0.7
0
Phosphorus (P), % 0 to 0.035
0 to 0.060
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.040
0.15 to 0.35