MakeItFrom.com
Menu (ESC)

SAE-AISI 8720 Steel vs. C86200 Bronze

SAE-AISI 8720 steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8720 steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
21
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 500
710
Tensile Strength: Yield (Proof), MPa 330
350

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 410
160
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 39
35
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
2.9
Embodied Energy, MJ/kg 20
49
Embodied Water, L/kg 50
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 290
540
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
25
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 17
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0.18 to 0.23
0
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 96.8 to 98
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.7 to 0.9
2.5 to 5.0
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 0.4 to 0.7
0 to 1.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0