MakeItFrom.com
Menu (ESC)

SAE-AISI 8740 Steel vs. EN 1.5501 Steel

Both SAE-AISI 8740 steel and EN 1.5501 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 8740 steel and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 200
120 to 150
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 23
12 to 17
Fatigue Strength, MPa 270 to 350
180 to 270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 370 to 400
270 to 310
Tensile Strength: Ultimate (UTS), MPa 580 to 670
390 to 510
Tensile Strength: Yield (Proof), MPa 380 to 570
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
52
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 20
18
Embodied Water, L/kg 50
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 850
190 to 460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20 to 24
14 to 18
Strength to Weight: Bending, points 20 to 22
15 to 18
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 17 to 20
11 to 15

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0.38 to 0.43
0.13 to 0.16
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 96.5 to 97.7
98.4 to 99.269
Manganese (Mn), % 0.75 to 1.0
0.6 to 0.8
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 0.4 to 0.7
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0.15 to 0.35
0 to 0.3
Sulfur (S), % 0 to 0.040
0 to 0.025

Comparable Variants