MakeItFrom.com
Menu (ESC)

SAE-AISI 8740 Steel vs. EN AC-46600 Aluminum

SAE-AISI 8740 steel belongs to the iron alloys classification, while EN AC-46600 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 8740 steel and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 200
77
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 11 to 23
1.1
Fatigue Strength, MPa 270 to 350
75
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 580 to 670
180
Tensile Strength: Yield (Proof), MPa 380 to 570
110

Thermal Properties

Latent Heat of Fusion, J/g 250
490
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1460
620
Melting Onset (Solidus), °C 1420
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 39
130
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
29
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
94

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 1.5
7.8
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 50
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71 to 120
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 850
81
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 20 to 24
18
Strength to Weight: Bending, points 20 to 22
25
Thermal Diffusivity, mm2/s 10
51
Thermal Shock Resistance, points 17 to 20
8.1

Alloy Composition

Aluminum (Al), % 0
85.6 to 92.4
Carbon (C), % 0.38 to 0.43
0
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 96.5 to 97.7
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0.75 to 1.0
0.15 to 0.65
Molybdenum (Mo), % 0.2 to 0.3
0
Nickel (Ni), % 0.4 to 0.7
0 to 0.35
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.15 to 0.35
6.0 to 8.0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.15