MakeItFrom.com
Menu (ESC)

SAE-AISI 9254 Steel vs. 3005 Aluminum

SAE-AISI 9254 steel belongs to the iron alloys classification, while 3005 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 9254 steel and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
33 to 73
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 20
1.1 to 16
Fatigue Strength, MPa 280
53 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 410
84 to 150
Tensile Strength: Ultimate (UTS), MPa 660
140 to 270
Tensile Strength: Yield (Proof), MPa 410
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 410
180
Melting Completion (Liquidus), °C 1440
660
Melting Onset (Solidus), °C 1400
640
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 46
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
42
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
9.5
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 1.5
8.2
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 49
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 450
18 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 24
14 to 27
Strength to Weight: Bending, points 22
21 to 33
Thermal Diffusivity, mm2/s 12
64
Thermal Shock Resistance, points 20
6.0 to 12

Alloy Composition

Aluminum (Al), % 0
95.7 to 98.8
Carbon (C), % 0.51 to 0.59
0
Chromium (Cr), % 0.6 to 0.8
0 to 0.1
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 96.1 to 97.1
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0.6 to 0.8
1.0 to 1.5
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 1.2 to 1.6
0 to 0.6
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15