MakeItFrom.com
Menu (ESC)

SAE-AISI 9254 Steel vs. A360.0 Aluminum

SAE-AISI 9254 steel belongs to the iron alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 9254 steel and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
75
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 20
1.6 to 5.0
Fatigue Strength, MPa 280
82 to 150
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Shear Strength, MPa 410
180
Tensile Strength: Ultimate (UTS), MPa 660
180 to 320
Tensile Strength: Yield (Proof), MPa 410
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 270
530
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1440
680
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 46
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
30
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 1.5
7.8
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 49
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 450
190 to 470
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 24
19 to 34
Strength to Weight: Bending, points 22
27 to 39
Thermal Diffusivity, mm2/s 12
48
Thermal Shock Resistance, points 20
8.5 to 15

Alloy Composition

Aluminum (Al), % 0
85.8 to 90.6
Carbon (C), % 0.51 to 0.59
0
Chromium (Cr), % 0.6 to 0.8
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 96.1 to 97.1
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0.6 to 0.8
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 1.2 to 1.6
9.0 to 10
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25