MakeItFrom.com
Menu (ESC)

SAE-AISI 9254 Steel vs. EN 1.0225 Steel

Both SAE-AISI 9254 steel and EN 1.0225 steel are iron alloys. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is SAE-AISI 9254 steel and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
6.7 to 24
Fatigue Strength, MPa 280
170 to 220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Shear Strength, MPa 410
280 to 290
Tensile Strength: Ultimate (UTS), MPa 660
440 to 500
Tensile Strength: Yield (Proof), MPa 410
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 46
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
1.8
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 20
18
Embodied Water, L/kg 49
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 450
140 to 390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
16 to 18
Strength to Weight: Bending, points 22
16 to 18
Thermal Diffusivity, mm2/s 12
14
Thermal Shock Resistance, points 20
14 to 16

Alloy Composition

Carbon (C), % 0.51 to 0.59
0 to 0.21
Chromium (Cr), % 0.6 to 0.8
0
Iron (Fe), % 96.1 to 97.1
98 to 100
Manganese (Mn), % 0.6 to 0.8
0 to 1.4
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 1.2 to 1.6
0 to 0.35
Sulfur (S), % 0 to 0.040
0 to 0.045