MakeItFrom.com
Menu (ESC)

SAE-AISI 9254 Steel vs. C68800 Brass

SAE-AISI 9254 steel belongs to the iron alloys classification, while C68800 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9254 steel and the bottom bar is C68800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
2.0 to 36
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
41
Shear Strength, MPa 410
380 to 510
Tensile Strength: Ultimate (UTS), MPa 660
570 to 890
Tensile Strength: Yield (Proof), MPa 410
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 410
160
Melting Completion (Liquidus), °C 1440
960
Melting Onset (Solidus), °C 1400
950
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 46
40
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
18
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
20

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
26
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 1.5
2.8
Embodied Energy, MJ/kg 20
48
Embodied Water, L/kg 49
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
16 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 450
710 to 2860
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
19 to 30
Strength to Weight: Bending, points 22
19 to 25
Thermal Diffusivity, mm2/s 12
12
Thermal Shock Resistance, points 20
19 to 30

Alloy Composition

Aluminum (Al), % 0
3.0 to 3.8
Carbon (C), % 0.51 to 0.59
0
Chromium (Cr), % 0.6 to 0.8
0
Cobalt (Co), % 0
0.25 to 0.55
Copper (Cu), % 0
70.8 to 75.5
Iron (Fe), % 96.1 to 97.1
0 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.6 to 0.8
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 1.2 to 1.6
0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
21.3 to 24.1
Residuals, % 0
0 to 0.5