MakeItFrom.com
Menu (ESC)

SAE-AISI 9254 Steel vs. C87600 Bronze

SAE-AISI 9254 steel belongs to the iron alloys classification, while C87600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9254 steel and the bottom bar is C87600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
42
Tensile Strength: Ultimate (UTS), MPa 660
470
Tensile Strength: Yield (Proof), MPa 410
230

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 410
190
Melting Completion (Liquidus), °C 1440
970
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 46
28
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
29
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 1.5
2.7
Embodied Energy, MJ/kg 20
43
Embodied Water, L/kg 49
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
71
Resilience: Unit (Modulus of Resilience), kJ/m3 450
240
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
16
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 12
8.1
Thermal Shock Resistance, points 20
17

Alloy Composition

Carbon (C), % 0.51 to 0.59
0
Chromium (Cr), % 0.6 to 0.8
0
Copper (Cu), % 0
88 to 92.5
Iron (Fe), % 96.1 to 97.1
0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.6 to 0.8
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 1.2 to 1.6
3.5 to 5.5
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
4.0 to 7.0
Residuals, % 0
0 to 0.5