MakeItFrom.com
Menu (ESC)

SAE-AISI 9254 Steel vs. S43940 Stainless Steel

Both SAE-AISI 9254 steel and S43940 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9254 steel and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
21
Fatigue Strength, MPa 280
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
77
Shear Strength, MPa 410
310
Tensile Strength: Ultimate (UTS), MPa 660
490
Tensile Strength: Yield (Proof), MPa 410
280

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 410
890
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 46
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 1.5
2.6
Embodied Energy, MJ/kg 20
38
Embodied Water, L/kg 49
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
86
Resilience: Unit (Modulus of Resilience), kJ/m3 450
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 12
6.8
Thermal Shock Resistance, points 20
18

Alloy Composition

Carbon (C), % 0.51 to 0.59
0 to 0.030
Chromium (Cr), % 0.6 to 0.8
17.5 to 18.5
Iron (Fe), % 96.1 to 97.1
78.2 to 82.1
Manganese (Mn), % 0.6 to 0.8
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 1.2 to 1.6
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6