MakeItFrom.com
Menu (ESC)

SAE-AISI 9255 Steel vs. C90200 Bronze

SAE-AISI 9255 steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9255 steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
70
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
30
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 680
260
Tensile Strength: Yield (Proof), MPa 390
110

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1390
880
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 46
62
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
34
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 1.5
3.3
Embodied Energy, MJ/kg 20
53
Embodied Water, L/kg 46
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
63
Resilience: Unit (Modulus of Resilience), kJ/m3 400
55
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
8.3
Strength to Weight: Bending, points 22
10
Thermal Diffusivity, mm2/s 13
19
Thermal Shock Resistance, points 21
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.51 to 0.59
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 96.2 to 97
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.7 to 1.0
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 1.8 to 2.2
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6