MakeItFrom.com
Menu (ESC)

SAE-AISI 9260 Steel vs. 2025 Aluminum

SAE-AISI 9260 steel belongs to the iron alloys classification, while 2025 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI 9260 steel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
110
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 21
15
Fatigue Strength, MPa 260
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Shear Strength, MPa 420
240
Tensile Strength: Ultimate (UTS), MPa 660
400
Tensile Strength: Yield (Proof), MPa 380
260

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
520
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 45
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
10
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 1.5
7.9
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 46
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
55
Resilience: Unit (Modulus of Resilience), kJ/m3 380
450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 24
37
Strength to Weight: Bending, points 22
40
Thermal Diffusivity, mm2/s 12
58
Thermal Shock Resistance, points 20
18

Alloy Composition

Aluminum (Al), % 0
90.9 to 95.2
Carbon (C), % 0.56 to 0.64
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 96.1 to 96.9
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.75 to 1.0
0.4 to 1.2
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 1.8 to 2.2
0.5 to 1.2
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15