MakeItFrom.com
Menu (ESC)

SAE-AISI 9260 Steel vs. C62300 Bronze

SAE-AISI 9260 steel belongs to the iron alloys classification, while C62300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9260 steel and the bottom bar is C62300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
18 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
43
Shear Strength, MPa 420
360 to 390
Tensile Strength: Ultimate (UTS), MPa 660
570 to 630
Tensile Strength: Yield (Proof), MPa 380
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 400
220
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1390
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 45
54
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
28
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 1.5
3.1
Embodied Energy, MJ/kg 20
52
Embodied Water, L/kg 46
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
95 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 380
240 to 430
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
19 to 21
Strength to Weight: Bending, points 22
18 to 20
Thermal Diffusivity, mm2/s 12
15
Thermal Shock Resistance, points 20
20 to 22

Alloy Composition

Aluminum (Al), % 0
8.5 to 10
Carbon (C), % 0.56 to 0.64
0
Copper (Cu), % 0
83.2 to 89.5
Iron (Fe), % 96.1 to 96.9
2.0 to 4.0
Manganese (Mn), % 0.75 to 1.0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 1.8 to 2.2
0 to 0.25
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.6
Residuals, % 0
0 to 0.5