MakeItFrom.com
Menu (ESC)

SAE-AISI 9260 Steel vs. C84500 Brass

SAE-AISI 9260 steel belongs to the iron alloys classification, while C84500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 9260 steel and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
55
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 21
28
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 72
39
Tensile Strength: Ultimate (UTS), MPa 660
240
Tensile Strength: Yield (Proof), MPa 380
97

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 400
150
Melting Completion (Liquidus), °C 1430
980
Melting Onset (Solidus), °C 1390
840
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 45
72
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
28
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 1.5
2.9
Embodied Energy, MJ/kg 20
47
Embodied Water, L/kg 46
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
54
Resilience: Unit (Modulus of Resilience), kJ/m3 380
45
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
7.7
Strength to Weight: Bending, points 22
9.8
Thermal Diffusivity, mm2/s 12
23
Thermal Shock Resistance, points 20
8.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.56 to 0.64
0
Copper (Cu), % 0
77 to 79
Iron (Fe), % 96.1 to 96.9
0 to 0.4
Lead (Pb), % 0
6.0 to 7.5
Manganese (Mn), % 0.75 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 1.8 to 2.2
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7