MakeItFrom.com
Menu (ESC)

SAE-AISI 94B30 Steel vs. EN 1.4513 Stainless Steel

Both SAE-AISI 94B30 steel and EN 1.4513 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI 94B30 steel and the bottom bar is EN 1.4513 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
26
Fatigue Strength, MPa 220
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 320
310
Tensile Strength: Ultimate (UTS), MPa 500
480
Tensile Strength: Yield (Proof), MPa 300
240

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 410
880
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
10
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.5
2.5
Embodied Energy, MJ/kg 20
35
Embodied Water, L/kg 49
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 250
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 10
6.8
Thermal Shock Resistance, points 15
17

Alloy Composition

Boron (B), % 0.00050 to 0.0030
0
Carbon (C), % 0.28 to 0.33
0 to 0.025
Chromium (Cr), % 0.3 to 0.5
16 to 18
Iron (Fe), % 97 to 98.1
77.7 to 83.1
Manganese (Mn), % 0.75 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.080 to 0.15
0.8 to 1.4
Nickel (Ni), % 0.3 to 0.6
0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0.15 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.8