MakeItFrom.com
Menu (ESC)

SAE-AISI A2 Steel vs. 204.0 Aluminum

SAE-AISI A2 steel belongs to the iron alloys classification, while 204.0 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI A2 steel and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 710 to 2040
230 to 340

Thermal Properties

Latent Heat of Fusion, J/g 260
390
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
580
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 38
120
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 9.5
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 5.5
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 38
150
Embodied Water, L/kg 73
1150

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 25 to 73
21 to 31
Strength to Weight: Bending, points 23 to 46
28 to 36
Thermal Diffusivity, mm2/s 10
46
Thermal Shock Resistance, points 25 to 71
12 to 18

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.5
Carbon (C), % 1.0 to 1.1
0
Chromium (Cr), % 4.8 to 5.5
0
Copper (Cu), % 0 to 0.25
4.2 to 5.0
Iron (Fe), % 89.4 to 93.3
0 to 0.35
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 0.9 to 1.4
0
Nickel (Ni), % 0 to 0.3
0 to 0.050
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Vanadium (V), % 0.15 to 0.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15