MakeItFrom.com
Menu (ESC)

SAE-AISI A3 Steel vs. C82600 Copper

SAE-AISI A3 steel belongs to the iron alloys classification, while C82600 copper belongs to the copper alloys. There are 22 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI A3 steel and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 700 to 2150
570 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 37
130
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.3
19
Electrical Conductivity: Equal Weight (Specific), % IACS 9.7
20

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 4.4
11
Embodied Energy, MJ/kg 67
180
Embodied Water, L/kg 78
310

Common Calculations

Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25 to 77
18 to 36
Strength to Weight: Bending, points 23 to 48
17 to 28
Thermal Diffusivity, mm2/s 10
37
Thermal Shock Resistance, points 23 to 70
19 to 39

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.3 to 2.6
Carbon (C), % 1.2 to 1.3
0
Chromium (Cr), % 4.8 to 5.5
0 to 0.1
Cobalt (Co), % 0
0.35 to 0.65
Copper (Cu), % 0 to 0.25
94.9 to 97.2
Iron (Fe), % 88.7 to 92
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.4 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.4
0
Nickel (Ni), % 0 to 0.3
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.2 to 0.35
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0.8 to 1.4
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5