MakeItFrom.com
Menu (ESC)

SAE-AISI A3 Steel vs. S35135 Stainless Steel

Both SAE-AISI A3 steel and S35135 stainless steel are iron alloys. They have 44% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI A3 steel and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Tensile Strength: Ultimate (UTS), MPa 700 to 2150
590

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 6.0
37
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 4.4
6.8
Embodied Energy, MJ/kg 67
94
Embodied Water, L/kg 78
220

Common Calculations

PREN (Pitting Resistance) 8.9
37
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25 to 77
20
Strength to Weight: Bending, points 23 to 48
19
Thermal Shock Resistance, points 23 to 70
13

Alloy Composition

Carbon (C), % 1.2 to 1.3
0 to 0.080
Chromium (Cr), % 4.8 to 5.5
20 to 25
Copper (Cu), % 0 to 0.25
0 to 0.75
Iron (Fe), % 88.7 to 92
28.3 to 45
Manganese (Mn), % 0.4 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.4
4.0 to 4.8
Nickel (Ni), % 0 to 0.3
30 to 38
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.5
0.6 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.4 to 1.0
Vanadium (V), % 0.8 to 1.4
0