MakeItFrom.com
Menu (ESC)

SAE-AISI A9 Steel vs. 772.0 Aluminum

SAE-AISI A9 steel belongs to the iron alloys classification, while 772.0 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI A9 steel and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 770 to 2030
260 to 320

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1410
580
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 35
150
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
35
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 4.7
8.0
Embodied Energy, MJ/kg 70
150
Embodied Water, L/kg 82
1140

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 28 to 73
25 to 31
Strength to Weight: Bending, points 24 to 46
31 to 36
Thermal Diffusivity, mm2/s 9.6
58
Thermal Shock Resistance, points 25 to 66
11 to 14

Alloy Composition

Aluminum (Al), % 0
91.2 to 93.2
Carbon (C), % 0.45 to 0.55
0
Chromium (Cr), % 4.8 to 5.5
0.060 to 0.2
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 87 to 90.5
0 to 0.15
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 1.3 to 1.8
0
Nickel (Ni), % 1.3 to 1.8
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 1.2
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.1 to 0.2
Vanadium (V), % 0.8 to 1.4
0
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15