SAE-AISI D2 Steel vs. EN 1.0456 Steel
Both SAE-AISI D2 steel and EN 1.0456 steel are iron alloys. They have 85% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI D2 steel and the bottom bar is EN 1.0456 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 5.0 to 16 | |
24 to 26 |
Fatigue Strength, MPa | 310 to 860 | |
210 to 220 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 75 | |
73 |
Shear Strength, MPa | 460 to 1160 | |
270 to 280 |
Tensile Strength: Ultimate (UTS), MPa | 760 to 2000 | |
420 to 450 |
Tensile Strength: Yield (Proof), MPa | 470 to 1510 | |
290 to 300 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
250 |
Melting Completion (Liquidus), °C | 1440 | |
1460 |
Melting Onset (Solidus), °C | 1390 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 31 | |
48 |
Thermal Expansion, µm/m-K | 11 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 4.3 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 5.1 | |
8.4 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 8.0 | |
2.2 |
Density, g/cm3 | 7.7 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 3.4 | |
1.5 |
Embodied Energy, MJ/kg | 50 | |
20 |
Embodied Water, L/kg | 100 | |
49 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 92 to 100 | |
93 to 99 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 570 to 5940 | |
220 to 230 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 27 to 72 | |
15 to 16 |
Strength to Weight: Bending, points | 24 to 46 | |
16 to 17 |
Thermal Diffusivity, mm2/s | 8.3 | |
13 |
Thermal Shock Resistance, points | 25 to 67 | |
13 to 14 |
Alloy Composition
Aluminum (Al), % | 0 | |
0.020 to 0.060 |
Carbon (C), % | 1.4 to 1.6 | |
0 to 0.2 |
Chromium (Cr), % | 11 to 13 | |
0 to 0.3 |
Copper (Cu), % | 0 to 0.25 | |
0 to 0.35 |
Iron (Fe), % | 81.3 to 86.9 | |
96.7 to 99.48 |
Manganese (Mn), % | 0 to 0.6 | |
0.5 to 1.4 |
Molybdenum (Mo), % | 0.7 to 1.2 | |
0 to 0.1 |
Nickel (Ni), % | 0 to 0.3 | |
0 to 0.3 |
Niobium (Nb), % | 0 | |
0 to 0.050 |
Nitrogen (N), % | 0 | |
0 to 0.015 |
Phosphorus (P), % | 0 to 0.030 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.6 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.030 |
Titanium (Ti), % | 0 | |
0 to 0.030 |
Vanadium (V), % | 0 to 1.1 | |
0 to 0.050 |