MakeItFrom.com
Menu (ESC)

SAE-AISI D2 Steel vs. CC334G Bronze

SAE-AISI D2 steel belongs to the iron alloys classification, while CC334G bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI D2 steel and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 5.0 to 16
5.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 760 to 2000
810
Tensile Strength: Yield (Proof), MPa 470 to 1510
410

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1390
1020
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 31
41
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.3
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
29
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 3.4
3.6
Embodied Energy, MJ/kg 50
59
Embodied Water, L/kg 100
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 100
38
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 5940
710
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27 to 72
28
Strength to Weight: Bending, points 24 to 46
24
Thermal Diffusivity, mm2/s 8.3
11
Thermal Shock Resistance, points 25 to 67
28

Alloy Composition

Aluminum (Al), % 0
10 to 12
Carbon (C), % 1.4 to 1.6
0
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 0 to 0.25
72 to 84.5
Iron (Fe), % 81.3 to 86.9
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.6
0 to 2.5
Molybdenum (Mo), % 0.7 to 1.2
0
Nickel (Ni), % 0 to 0.3
4.0 to 7.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Vanadium (V), % 0 to 1.1
0
Zinc (Zn), % 0
0 to 0.5