MakeItFrom.com
Menu (ESC)

SAE-AISI D2 Steel vs. C71520 Copper-nickel

SAE-AISI D2 steel belongs to the iron alloys classification, while C71520 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI D2 steel and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 5.0 to 16
10 to 45
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
51
Shear Strength, MPa 460 to 1160
250 to 340
Tensile Strength: Ultimate (UTS), MPa 760 to 2000
370 to 570
Tensile Strength: Yield (Proof), MPa 470 to 1510
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Melting Completion (Liquidus), °C 1440
1170
Melting Onset (Solidus), °C 1390
1120
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 31
32
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.3
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
40
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.4
5.0
Embodied Energy, MJ/kg 50
73
Embodied Water, L/kg 100
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 100
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 5940
67 to 680
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27 to 72
12 to 18
Strength to Weight: Bending, points 24 to 46
13 to 17
Thermal Diffusivity, mm2/s 8.3
8.9
Thermal Shock Resistance, points 25 to 67
12 to 19

Alloy Composition

Carbon (C), % 1.4 to 1.6
0 to 0.050
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 0 to 0.25
65 to 71.6
Iron (Fe), % 81.3 to 86.9
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.7 to 1.2
0
Nickel (Ni), % 0 to 0.3
28 to 33
Phosphorus (P), % 0 to 0.030
0 to 0.2
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.030
0 to 0.020
Vanadium (V), % 0 to 1.1
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5