MakeItFrom.com
Menu (ESC)

SAE-AISI D2 Steel vs. C82000 Copper

SAE-AISI D2 steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI D2 steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 5.0 to 16
8.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 760 to 2000
350 to 690
Tensile Strength: Yield (Proof), MPa 470 to 1510
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1390
970
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 31
260
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.3
45
Electrical Conductivity: Equal Weight (Specific), % IACS 5.1
46

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
60
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.4
5.0
Embodied Energy, MJ/kg 50
77
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92 to 100
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 5940
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27 to 72
11 to 22
Strength to Weight: Bending, points 24 to 46
12 to 20
Thermal Diffusivity, mm2/s 8.3
76
Thermal Shock Resistance, points 25 to 67
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 1.4 to 1.6
0
Chromium (Cr), % 11 to 13
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0 to 0.25
95.2 to 97.4
Iron (Fe), % 81.3 to 86.9
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.6
0
Molybdenum (Mo), % 0.7 to 1.2
0
Nickel (Ni), % 0 to 0.3
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Vanadium (V), % 0 to 1.1
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5