MakeItFrom.com
Menu (ESC)

SAE-AISI D3 Steel vs. ACI-ASTM CH10 Steel

Both SAE-AISI D3 steel and ACI-ASTM CH10 steel are iron alloys. They have 73% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI D3 steel and the bottom bar is ACI-ASTM CH10 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 9.8 to 15
34
Fatigue Strength, MPa 310 to 940
180
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 74
78
Tensile Strength: Ultimate (UTS), MPa 770 to 2050
540
Tensile Strength: Yield (Proof), MPa 480 to 1550
230

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Melting Completion (Liquidus), °C 1430
1410
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 31
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
20
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.7
Embodied Energy, MJ/kg 48
53
Embodied Water, L/kg 100
180

Common Calculations

PREN (Pitting Resistance) 13
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 180
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28 to 74
19
Strength to Weight: Bending, points 24 to 47
19
Thermal Diffusivity, mm2/s 8.3
3.9
Thermal Shock Resistance, points 23 to 63
12

Alloy Composition

Carbon (C), % 2.0 to 2.4
0 to 0.1
Chromium (Cr), % 11 to 13.5
22 to 26
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 80.3 to 87
54.8 to 66
Manganese (Mn), % 0 to 0.6
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.3
12 to 15
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.040
Tungsten (W), % 0 to 1.0
0
Vanadium (V), % 0 to 1.0
0