MakeItFrom.com
Menu (ESC)

SAE-AISI D3 Steel vs. S35500 Stainless Steel

Both SAE-AISI D3 steel and S35500 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI D3 steel and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 9.8 to 15
14
Fatigue Strength, MPa 310 to 940
690 to 730
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 74
78
Shear Strength, MPa 470 to 1220
810 to 910
Tensile Strength: Ultimate (UTS), MPa 770 to 2050
1330 to 1490
Tensile Strength: Yield (Proof), MPa 480 to 1550
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 31
16
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
16
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.5
Embodied Energy, MJ/kg 48
47
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 13
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 97 to 180
180 to 190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28 to 74
47 to 53
Strength to Weight: Bending, points 24 to 47
34 to 37
Thermal Diffusivity, mm2/s 8.3
4.4
Thermal Shock Resistance, points 23 to 63
44 to 49

Alloy Composition

Carbon (C), % 2.0 to 2.4
0.1 to 0.15
Chromium (Cr), % 11 to 13.5
15 to 16
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 80.3 to 87
73.2 to 77.7
Manganese (Mn), % 0 to 0.6
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0 to 0.3
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 0 to 1.0
0
Vanadium (V), % 0 to 1.0
0