MakeItFrom.com
Menu (ESC)

SAE-AISI D4 Steel vs. 2219 Aluminum

SAE-AISI D4 steel belongs to the iron alloys classification, while 2219 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI D4 steel and the bottom bar is 2219 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 8.4 to 15
2.2 to 20
Fatigue Strength, MPa 310 to 920
90 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 74
27
Shear Strength, MPa 460 to 1210
110 to 280
Tensile Strength: Ultimate (UTS), MPa 760 to 2060
180 to 480
Tensile Strength: Yield (Proof), MPa 470 to 1540
88 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
540
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 31
110 to 170
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.2
28 to 44
Electrical Conductivity: Equal Weight (Specific), % IACS 5.0
81 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
11
Density, g/cm3 7.7
3.1
Embodied Carbon, kg CO2/kg material 3.3
8.2
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 100
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 160
9.6 to 60
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
44
Strength to Weight: Axial, points 27 to 75
16 to 43
Strength to Weight: Bending, points 24 to 47
23 to 44
Thermal Diffusivity, mm2/s 8.3
42 to 63
Thermal Shock Resistance, points 23 to 63
8.2 to 22

Alloy Composition

Aluminum (Al), % 0
91.5 to 93.8
Carbon (C), % 2.1 to 2.4
0
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 0 to 0.25
5.8 to 6.8
Iron (Fe), % 80.6 to 86.3
0 to 0.3
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.6
0.2 to 0.4
Molybdenum (Mo), % 0.7 to 1.2
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.020 to 0.1
Vanadium (V), % 0 to 1.0
0.050 to 0.15
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants