MakeItFrom.com
Menu (ESC)

SAE-AISI F2 Steel vs. EN AC-44500 Aluminum

SAE-AISI F2 steel belongs to the iron alloys classification, while EN AC-44500 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI F2 steel and the bottom bar is EN AC-44500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 710 to 2360
270

Thermal Properties

Latent Heat of Fusion, J/g 250
570
Melting Completion (Liquidus), °C 1520
590
Melting Onset (Solidus), °C 1470
580
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 42
130
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
33
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 8.1
2.5
Embodied Carbon, kg CO2/kg material 2.3
7.7
Embodied Energy, MJ/kg 32
140
Embodied Water, L/kg 50
1050

Common Calculations

Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
55
Strength to Weight: Axial, points 24 to 81
29
Strength to Weight: Bending, points 22 to 49
36
Thermal Diffusivity, mm2/s 11
57
Thermal Shock Resistance, points 21 to 71
13

Alloy Composition

Aluminum (Al), % 0
83.7 to 89.5
Carbon (C), % 1.2 to 1.4
0
Chromium (Cr), % 0.2 to 0.4
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 92.6 to 95.4
0 to 1.0
Magnesium (Mg), % 0
0 to 0.4
Manganese (Mn), % 0.1 to 0.5
0 to 0.55
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.1 to 0.5
10.5 to 13.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 3.0 to 4.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.25