MakeItFrom.com
Menu (ESC)

SAE-AISI H13 Steel vs. 1100A Aluminum

SAE-AISI H13 steel belongs to the iron alloys classification, while 1100A aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI H13 steel and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 690 to 1820
89 to 170

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 29
230
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.3
60
Electrical Conductivity: Equal Weight (Specific), % IACS 9.7
200

Otherwise Unclassified Properties

Base Metal Price, % relative 6.0
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.3
8.2
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 78
1190

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25 to 65
9.1 to 17
Strength to Weight: Bending, points 22 to 43
16 to 25
Thermal Diffusivity, mm2/s 7.8
93
Thermal Shock Resistance, points 25 to 65
4.0 to 7.6

Alloy Composition

Aluminum (Al), % 0
99 to 100
Carbon (C), % 0.32 to 0.45
0
Chromium (Cr), % 4.8 to 5.5
0
Copper (Cu), % 0 to 0.25
0.050 to 0.2
Iron (Fe), % 88.8 to 92
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.2 to 0.5
0 to 0.050
Molybdenum (Mo), % 1.1 to 1.8
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.8 to 1.2
0 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0.8 to 1.2
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants