MakeItFrom.com
Menu (ESC)

SAE-AISI H13 Steel vs. 7178 Aluminum

SAE-AISI H13 steel belongs to the iron alloys classification, while 7178 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI H13 steel and the bottom bar is 7178 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 690 to 1820
240 to 640

Thermal Properties

Latent Heat of Fusion, J/g 270
370
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
480
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 29
130
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.3
31
Electrical Conductivity: Equal Weight (Specific), % IACS 9.7
91

Otherwise Unclassified Properties

Base Metal Price, % relative 6.0
10
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 4.3
8.2
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 78
1110

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 25 to 65
21 to 58
Strength to Weight: Bending, points 22 to 43
28 to 54
Thermal Diffusivity, mm2/s 7.8
47
Thermal Shock Resistance, points 25 to 65
10 to 28

Alloy Composition

Aluminum (Al), % 0
85.4 to 89.5
Carbon (C), % 0.32 to 0.45
0
Chromium (Cr), % 4.8 to 5.5
0.18 to 0.28
Copper (Cu), % 0 to 0.25
1.6 to 2.4
Iron (Fe), % 88.8 to 92
0 to 0.5
Magnesium (Mg), % 0
2.4 to 3.1
Manganese (Mn), % 0.2 to 0.5
0 to 0.3
Molybdenum (Mo), % 1.1 to 1.8
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.8 to 1.2
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0.8 to 1.2
0
Zinc (Zn), % 0
6.3 to 7.3
Residuals, % 0
0 to 0.15

Comparable Variants