MakeItFrom.com
Menu (ESC)

SAE-AISI H13 Steel vs. EN AC-51500 Aluminum

SAE-AISI H13 steel belongs to the iron alloys classification, while EN AC-51500 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI H13 steel and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 690 to 1820
280

Thermal Properties

Latent Heat of Fusion, J/g 270
430
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
590
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 29
120
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.3
26
Electrical Conductivity: Equal Weight (Specific), % IACS 9.7
88

Otherwise Unclassified Properties

Base Metal Price, % relative 6.0
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 4.3
9.0
Embodied Energy, MJ/kg 64
150
Embodied Water, L/kg 78
1150

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 25 to 65
29
Strength to Weight: Bending, points 22 to 43
36
Thermal Diffusivity, mm2/s 7.8
49
Thermal Shock Resistance, points 25 to 65
13

Alloy Composition

Aluminum (Al), % 0
89.8 to 93.1
Carbon (C), % 0.32 to 0.45
0
Chromium (Cr), % 4.8 to 5.5
0
Copper (Cu), % 0 to 0.25
0 to 0.050
Iron (Fe), % 88.8 to 92
0 to 0.25
Magnesium (Mg), % 0
4.7 to 6.0
Manganese (Mn), % 0.2 to 0.5
0.4 to 0.8
Molybdenum (Mo), % 1.1 to 1.8
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.8 to 1.2
1.8 to 2.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0.8 to 1.2
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15