MakeItFrom.com
Menu (ESC)

SAE-AISI H14 Steel vs. S32050 Stainless Steel

Both SAE-AISI H14 steel and S32050 stainless steel are iron alloys. They have 54% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI H14 steel and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
81
Tensile Strength: Ultimate (UTS), MPa 710 to 2030
770

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Melting Completion (Liquidus), °C 1530
1460
Melting Onset (Solidus), °C 1490
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 35
12
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.3
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 2.7
6.0
Embodied Energy, MJ/kg 39
81
Embodied Water, L/kg 73
210

Common Calculations

PREN (Pitting Resistance) 13
48
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24 to 69
27
Strength to Weight: Bending, points 22 to 44
23
Thermal Diffusivity, mm2/s 9.3
3.3
Thermal Shock Resistance, points 24 to 68
17

Alloy Composition

Carbon (C), % 0.35 to 0.45
0 to 0.030
Chromium (Cr), % 4.8 to 5.5
22 to 24
Copper (Cu), % 0 to 0.25
0 to 0.4
Iron (Fe), % 86.5 to 89.9
43.1 to 51.8
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
6.0 to 6.6
Nickel (Ni), % 0 to 0.3
20 to 23
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0.8 to 1.2
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Tungsten (W), % 4.0 to 5.3
0