MakeItFrom.com
Menu (ESC)

SAE-AISI H19 Steel vs. 6065 Aluminum

SAE-AISI H19 steel belongs to the iron alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI H19 steel and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 720 to 1990
310 to 400

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Melting Completion (Liquidus), °C 1540
640
Melting Onset (Solidus), °C 1490
590
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 29
170
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 22
11
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 7.5
8.4
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 110
1200

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 24 to 68
31 to 40
Strength to Weight: Bending, points 22 to 43
36 to 43
Thermal Diffusivity, mm2/s 7.9
67
Thermal Shock Resistance, points 21 to 59
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Carbon (C), % 0.32 to 0.45
0
Chromium (Cr), % 4.0 to 4.8
0 to 0.15
Cobalt (Co), % 4.0 to 4.5
0
Copper (Cu), % 0 to 0.25
0.15 to 0.4
Iron (Fe), % 81.4 to 85.5
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0.2 to 0.5
0 to 0.15
Molybdenum (Mo), % 0.3 to 0.55
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.2 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 3.8 to 4.5
0
Vanadium (V), % 1.8 to 2.2
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15