MakeItFrom.com
Menu (ESC)

SAE-AISI H22 Steel vs. AWS E320

Both SAE-AISI H22 steel and AWS E320 are iron alloys. They have 41% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI H22 steel and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 700 to 1920
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1670
1410
Melting Onset (Solidus), °C 1620
1360
Specific Heat Capacity, J/kg-K 440
460
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 28
38
Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 4.9
6.5
Embodied Energy, MJ/kg 73
91
Embodied Water, L/kg 72
220

Common Calculations

PREN (Pitting Resistance) 21
28
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 22
24
Strength to Weight: Axial, points 22 to 61
21
Strength to Weight: Bending, points 20 to 39
20
Thermal Shock Resistance, points 22 to 60
16

Alloy Composition

Carbon (C), % 0.3 to 0.4
0 to 0.070
Chromium (Cr), % 1.8 to 3.8
19 to 21
Copper (Cu), % 0 to 0.25
3.0 to 4.0
Iron (Fe), % 82.2 to 87.4
31.8 to 43.5
Manganese (Mn), % 0.15 to 0.4
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.3
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0.15 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 10 to 11.8
0
Vanadium (V), % 0.25 to 0.5
0