MakeItFrom.com
Menu (ESC)

SAE-AISI H24 Steel vs. EN AC-45100 Aluminum

SAE-AISI H24 steel belongs to the iron alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI H24 steel and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 720 to 1990
300 to 360

Thermal Properties

Latent Heat of Fusion, J/g 240
470
Melting Completion (Liquidus), °C 1750
630
Melting Onset (Solidus), °C 1700
550
Specific Heat Capacity, J/kg-K 420
890
Thermal Conductivity, W/m-K 27
140
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 37
10
Density, g/cm3 9.1
2.8
Embodied Carbon, kg CO2/kg material 6.1
7.9
Embodied Energy, MJ/kg 93
150
Embodied Water, L/kg 78
1100

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 22
49
Strength to Weight: Axial, points 22 to 61
30 to 35
Strength to Weight: Bending, points 20 to 39
35 to 39
Thermal Diffusivity, mm2/s 6.9
54
Thermal Shock Resistance, points 22 to 61
14 to 16

Alloy Composition

Aluminum (Al), % 0
88 to 92.8
Carbon (C), % 0.42 to 0.53
0
Chromium (Cr), % 2.5 to 3.5
0
Copper (Cu), % 0 to 0.25
2.6 to 3.6
Iron (Fe), % 78 to 82.4
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.45
Manganese (Mn), % 0.15 to 0.4
0 to 0.55
Nickel (Ni), % 0 to 0.3
0 to 0.1
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.15 to 0.4
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 14 to 16
0
Vanadium (V), % 0.4 to 0.6
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15