MakeItFrom.com
Menu (ESC)

SAE-AISI H24 Steel vs. EN AC-51300 Aluminum

SAE-AISI H24 steel belongs to the iron alloys classification, while EN AC-51300 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI H24 steel and the bottom bar is EN AC-51300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
25
Tensile Strength: Ultimate (UTS), MPa 720 to 1990
190

Thermal Properties

Latent Heat of Fusion, J/g 240
400
Melting Completion (Liquidus), °C 1750
640
Melting Onset (Solidus), °C 1700
600
Specific Heat Capacity, J/kg-K 420
910
Thermal Conductivity, W/m-K 27
110
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 9.1
2.7
Embodied Carbon, kg CO2/kg material 6.1
9.1
Embodied Energy, MJ/kg 93
150
Embodied Water, L/kg 78
1180

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 22
51
Strength to Weight: Axial, points 22 to 61
20
Strength to Weight: Bending, points 20 to 39
28
Thermal Diffusivity, mm2/s 6.9
45
Thermal Shock Resistance, points 22 to 61
8.6

Alloy Composition

Aluminum (Al), % 0
91.4 to 95.5
Carbon (C), % 0.42 to 0.53
0
Chromium (Cr), % 2.5 to 3.5
0
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 78 to 82.4
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 0.15 to 0.4
0 to 0.45
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.15 to 0.4
0 to 0.55
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 14 to 16
0
Vanadium (V), % 0.4 to 0.6
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15