MakeItFrom.com
Menu (ESC)

SAE-AISI H25 Steel vs. EN AC-42100 Aluminum

SAE-AISI H25 steel belongs to the iron alloys classification, while EN AC-42100 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI H25 steel and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 710 to 1620
280 to 290

Thermal Properties

Latent Heat of Fusion, J/g 250
500
Melting Completion (Liquidus), °C 1750
610
Melting Onset (Solidus), °C 1700
600
Specific Heat Capacity, J/kg-K 420
910
Thermal Conductivity, W/m-K 26
150
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 9.1
2.6
Embodied Carbon, kg CO2/kg material 6.2
8.0
Embodied Energy, MJ/kg 93
150
Embodied Water, L/kg 83
1110

Common Calculations

Stiffness to Weight: Axial, points 12
15
Stiffness to Weight: Bending, points 22
53
Strength to Weight: Axial, points 22 to 50
30 to 31
Strength to Weight: Bending, points 20 to 34
37 to 38
Thermal Diffusivity, mm2/s 6.7
66
Thermal Shock Resistance, points 22 to 49
13

Alloy Composition

Aluminum (Al), % 0
91.3 to 93.3
Carbon (C), % 0.22 to 0.32
0
Chromium (Cr), % 3.8 to 4.5
0
Copper (Cu), % 0 to 0.25
0 to 0.050
Iron (Fe), % 77.2 to 81.3
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0.15 to 0.4
0 to 0.1
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.15 to 0.4
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 14 to 16
0
Vanadium (V), % 0.4 to 0.6
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1