MakeItFrom.com
Menu (ESC)

SAE-AISI L2 Steel vs. AWS E320

Both SAE-AISI L2 steel and AWS E320 are iron alloys. They have a modest 40% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI L2 steel and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
77
Tensile Strength: Ultimate (UTS), MPa 590 to 1960
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1450
1410
Melting Onset (Solidus), °C 1410
1360
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
38
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.9
6.5
Embodied Energy, MJ/kg 27
91
Embodied Water, L/kg 51
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 21 to 70
21
Strength to Weight: Bending, points 20 to 45
20
Thermal Shock Resistance, points 19 to 65
16

Alloy Composition

Carbon (C), % 0.45 to 1.0
0 to 0.070
Chromium (Cr), % 0.7 to 1.2
19 to 21
Copper (Cu), % 0 to 0.25
3.0 to 4.0
Iron (Fe), % 95.5 to 98.7
31.8 to 43.5
Manganese (Mn), % 0.1 to 0.9
0.5 to 2.5
Molybdenum (Mo), % 0 to 0.25
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0.1 to 0.3
0