MakeItFrom.com
Menu (ESC)

SAE-AISI L3 Steel vs. EN 1.7366 Steel

Both SAE-AISI L3 steel and EN 1.7366 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI L3 steel and the bottom bar is EN 1.7366 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
74
Tensile Strength: Ultimate (UTS), MPa 600 to 2250
460 to 710

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 43
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
4.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.7
Embodied Energy, MJ/kg 27
23
Embodied Water, L/kg 53
69

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21 to 80
16 to 25
Strength to Weight: Bending, points 20 to 49
17 to 23
Thermal Diffusivity, mm2/s 12
11
Thermal Shock Resistance, points 18 to 67
13 to 20

Alloy Composition

Carbon (C), % 1.0 to 1.1
0 to 0.18
Chromium (Cr), % 1.3 to 1.7
4.0 to 6.0
Iron (Fe), % 95.5 to 97.3
91.9 to 95.3
Manganese (Mn), % 0.25 to 0.8
0.3 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0.1 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0.1 to 0.3
0

Comparable Variants