MakeItFrom.com
Menu (ESC)

SAE-AISI L3 Steel vs. S38815 Stainless Steel

Both SAE-AISI L3 steel and S38815 stainless steel are iron alloys. They have 64% of their average alloy composition in common. There are 19 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is SAE-AISI L3 steel and the bottom bar is S38815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
74
Tensile Strength: Ultimate (UTS), MPa 600 to 2250
610

Thermal Properties

Latent Heat of Fusion, J/g 250
370
Melting Completion (Liquidus), °C 1450
1360
Melting Onset (Solidus), °C 1410
1310
Specific Heat Capacity, J/kg-K 470
500
Thermal Expansion, µm/m-K 13
15

Otherwise Unclassified Properties

Base Metal Price, % relative 2.5
19
Density, g/cm3 7.8
7.5
Embodied Carbon, kg CO2/kg material 1.9
3.8
Embodied Energy, MJ/kg 27
54
Embodied Water, L/kg 53
140

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21 to 80
22
Strength to Weight: Bending, points 20 to 49
21
Thermal Shock Resistance, points 18 to 67
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.3
Carbon (C), % 1.0 to 1.1
0 to 0.030
Chromium (Cr), % 1.3 to 1.7
13 to 15
Copper (Cu), % 0
0.75 to 1.5
Iron (Fe), % 95.5 to 97.3
56.1 to 67
Manganese (Mn), % 0.25 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
13 to 17
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0.1 to 0.5
5.5 to 6.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Vanadium (V), % 0.1 to 0.3
0