MakeItFrom.com
Menu (ESC)

SAE-AISI M3 Class 1 Steel vs. 520.0 Aluminum

SAE-AISI M3 class 1 steel belongs to the iron alloys classification, while 520.0 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI M3 class 1 steel and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
66
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 770 to 2150
330

Thermal Properties

Latent Heat of Fusion, J/g 260
390
Melting Completion (Liquidus), °C 1610
600
Melting Onset (Solidus), °C 1570
480
Specific Heat Capacity, J/kg-K 440
910
Thermal Conductivity, W/m-K 26
87
Thermal Expansion, µm/m-K 12
25

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.3
2.6
Embodied Carbon, kg CO2/kg material 10
9.8
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 100
1170

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
52
Strength to Weight: Axial, points 26 to 72
35
Strength to Weight: Bending, points 22 to 44
41
Thermal Diffusivity, mm2/s 7.2
37
Thermal Shock Resistance, points 24 to 67
14

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.5
Carbon (C), % 1.0 to 1.1
0
Chromium (Cr), % 3.8 to 4.5
0
Copper (Cu), % 0 to 0.25
0 to 0.25
Iron (Fe), % 76.9 to 82.9
0 to 0.3
Magnesium (Mg), % 0
9.5 to 10.6
Manganese (Mn), % 0.15 to 0.4
0 to 0.15
Molybdenum (Mo), % 4.8 to 6.5
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.2 to 0.45
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 5.0 to 6.8
0
Vanadium (V), % 2.3 to 2.8
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15