MakeItFrom.com
Menu (ESC)

SAE-AISI M33 Steel vs. 6162 Aluminum

SAE-AISI M33 steel belongs to the iron alloys classification, while 6162 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI M33 steel and the bottom bar is 6162 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 810 to 2210
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Melting Completion (Liquidus), °C 1550
640
Melting Onset (Solidus), °C 1500
620
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 20
190
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 7.7
8.3
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 150
1180

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 27 to 75
29 to 30
Strength to Weight: Bending, points 24 to 46
36
Thermal Diffusivity, mm2/s 5.5
79
Thermal Shock Resistance, points 25 to 68
13

Alloy Composition

Aluminum (Al), % 0
96.7 to 98.9
Carbon (C), % 0.85 to 0.92
0
Chromium (Cr), % 3.5 to 4.0
0 to 0.1
Cobalt (Co), % 7.8 to 8.8
0
Copper (Cu), % 0 to 0.25
0 to 0.2
Iron (Fe), % 71.4 to 76.3
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0.15 to 0.4
0 to 0.1
Molybdenum (Mo), % 9.0 to 10
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.15 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 1.3 to 2.1
0
Vanadium (V), % 1.0 to 1.4
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15