MakeItFrom.com
Menu (ESC)

SAE-AISI M36 Steel vs. 4045 Aluminum

SAE-AISI M36 steel belongs to the iron alloys classification, while 4045 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is SAE-AISI M36 steel and the bottom bar is 4045 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 810 to 2190
120

Thermal Properties

Latent Heat of Fusion, J/g 260
540
Melting Completion (Liquidus), °C 1600
600
Melting Onset (Solidus), °C 1550
580
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 19
170
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 9.5
7.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 140
1070

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 27 to 72
13
Strength to Weight: Bending, points 23 to 44
21
Thermal Diffusivity, mm2/s 5.1
74
Thermal Shock Resistance, points 25 to 68
5.7

Alloy Composition

Aluminum (Al), % 0
87.4 to 91
Carbon (C), % 0.8 to 0.9
0
Chromium (Cr), % 3.8 to 4.5
0
Cobalt (Co), % 7.8 to 8.8
0
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 70.1 to 75.5
0 to 0.8
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.15 to 0.4
0 to 0.050
Molybdenum (Mo), % 4.6 to 5.5
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.2 to 0.45
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 5.5 to 6.5
0
Vanadium (V), % 1.8 to 2.3
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15