SAE-AISI M7 Steel vs. C82400 Copper
SAE-AISI M7 steel belongs to the iron alloys classification, while C82400 copper belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.
For each property being compared, the top bar is SAE-AISI M7 steel and the bottom bar is C82400 copper.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
120 |
Poisson's Ratio | 0.29 | |
0.33 |
Shear Modulus, GPa | 77 | |
45 |
Tensile Strength: Ultimate (UTS), MPa | 760 to 2210 | |
500 to 1030 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
230 |
Melting Completion (Liquidus), °C | 1560 | |
1000 |
Melting Onset (Solidus), °C | 1510 | |
900 |
Specific Heat Capacity, J/kg-K | 450 | |
380 |
Thermal Conductivity, W/m-K | 28 | |
130 |
Thermal Expansion, µm/m-K | 12 | |
17 |
Otherwise Unclassified Properties
Density, g/cm3 | 8.1 | |
8.8 |
Embodied Carbon, kg CO2/kg material | 8.9 | |
8.9 |
Embodied Energy, MJ/kg | 130 | |
140 |
Embodied Water, L/kg | 100 | |
310 |
Common Calculations
Stiffness to Weight: Axial, points | 14 | |
7.6 |
Stiffness to Weight: Bending, points | 24 | |
19 |
Strength to Weight: Axial, points | 26 to 76 | |
16 to 33 |
Strength to Weight: Bending, points | 23 to 47 | |
16 to 26 |
Thermal Diffusivity, mm2/s | 7.8 | |
39 |
Thermal Shock Resistance, points | 24 to 69 | |
17 to 36 |
Alloy Composition
Aluminum (Al), % | 0 | |
0 to 0.15 |
Beryllium (Be), % | 0 | |
1.6 to 1.9 |
Carbon (C), % | 1.0 to 1.1 | |
0 |
Chromium (Cr), % | 3.5 to 4.0 | |
0 to 0.1 |
Cobalt (Co), % | 0 | |
0.2 to 0.65 |
Copper (Cu), % | 0 to 0.25 | |
96 to 98.2 |
Iron (Fe), % | 79.8 to 83.8 | |
0 to 0.2 |
Lead (Pb), % | 0 | |
0 to 0.020 |
Manganese (Mn), % | 0.15 to 0.4 | |
0 |
Molybdenum (Mo), % | 8.2 to 9.2 | |
0 |
Nickel (Ni), % | 0 to 0.3 | |
0 to 0.2 |
Phosphorus (P), % | 0 to 0.030 | |
0 |
Silicon (Si), % | 0.2 to 0.55 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 |
Tin (Sn), % | 0 | |
0 to 0.1 |
Titanium (Ti), % | 0 | |
0 to 0.12 |
Tungsten (W), % | 1.4 to 2.1 | |
0 |
Vanadium (V), % | 1.8 to 2.3 | |
0 |
Zinc (Zn), % | 0 | |
0 to 0.1 |
Residuals, % | 0 | |
0 to 0.5 |